Análise estrutural de uma mesa em concreto protendido para um edifícios em alvenaria estrutural de blocos cerâmicos (Parte 02/02)

Continuado o artigo anterior, segue-se na análise das tensões na laje protendida de uma das rpu`s para a combinação frequente, estabelecida na NBR 6118:2014.

Figura 1 – Análise de tensões para combinação frenquente (Sistema CAD/TQS)

de acordo com a Figura 1, a rpu encontra-se comprimida. Isso se estende a todas as rpu`s do projeto, com o objetivo de garantir que toda a laje esteja comprimida.

Figura 2 – Análise de tensões no ato da protensão (Sistema CAD/TQS)

Para essa rpu, as tensões no ato da protensão estão dentro dos limites estabelecidos. Portanto, mesmo assim, seria indicado que a carga de protensão fosse aplicada em pelo menos três etapas. A viabilidade econômica para armadura passiva da laje protendida, parte principalmente da possibilidade de utilização da armadura mínima. Para isso, tem que ser observado atentamente se toda a laje encontra-se comprimida, para fazer as devidas correlações para o detalhamento da armadura passiva no projeto.

Figura 3 – Armadura mínima na rpu (Sistema CAD/TQS)

definido as armadura mínimas da laje de acordo com os critérios estabelecidos na NBR 6118:2014, precisa-se analise com bastante precisão as regiões das lajes onde precisarão de armadura de reforços.

Figura 4 – Regiões de reforços para armadura passiva positiva

Como os parâmetros de estabilidade de instabilidade da estrutura bem como o dimensionamento dos demais elementos estruturais estão de acordo com o preconizado pela NBR 6118:2014, esta estrutura mostra-se com uma excelente candidata como solução eficaz para edifícios em alvenaria estrutura sob mesa de concreto.

Flávio Roberto

Engenheiro civil formado pela Universidade Federal da Paraíba, Mestrado Engenharia de Estrutura pela Universidade Federal da Pernambuco e em Tecnologia de Construção de Edifício pelo Instituto Federal de Ciência e Tecnologia da Paraíba, Pós Graduado em Estrutura de Concreto e Fundações pela Universidade da Cidade de São Paulo.

Compartilhe

entre para nossa lista VIP e receba conteúdos com exclusividade

Veja mais

Análise Dinâmica das Estruturas: Vento (parte 01)

O recente terremoto que atingiu a Síria e a Turquia, causando um grande número de mortes, ganhou destaque em todo o mundo, incluindo o Brasil, especialmente entre os engenheiros. Eventos sísmicos como esse, despertam a atenção de profissionais que trabalham na área da engenharia estrutural, pois podem causar consequências graves para as edificações, além de perdas humanas e econômicas significativas. E no Brasil, será que haveria a necessidade de preocupação com terremotos ou ventos de alta velocidade? Antes de responder a essa pergunta, é importante explorar um pouco mais sobre o assunto. Nesse primeiro texto, será abordado a ação do Vento, sendo este uma das portas de entrada para a compreensão do comportamento dinâmico das estruturas. O Vento A disciplina que trata de ações que produzem vibrações nas estruturas é denominada de Análise Dinâmica. Geralmente, este assunto não está inserido na grade curricular dos cursos de Engenharia Civil, sendo abordado em programas de pós-graduação. Conceitos Básicos da Dinâmica das Estruturas de Edifícios Um problema de dinâmica estrutural difere de seu equivalente estático em dois importantes aspectos: o primeiro é a variação temporal, isto é, o carregamento e a resposta dinâmica variam com o tempo, o segundo trata-se do surgimento de forças inerciais, associadas às acelerações, forças de dissipação, usualmente associadas às velocidades.  As equações de movimento de um sistema podem ser obtidas utilizando o princípio de D’Alambert, que estabelece um equilíbrio dos esforços resistentes, de inércia, de amortecimento e do esforço externo aplicado para os graus de liberdade da estrutura. As equações diferencias do movimento são: Nota-se que a parcela estática ensinada na graduação em engenharia civil é; ku=F, sendo “F” as forças externas estáticas. Para resolver o sistema de equações diferenciais supramencionado emprega-se o modelo massa-mola, conforme a figura abaixo: que faz analogia ao sistema estrutural: A resolução dessa

Saiba Mais »

Técnica de injeção de fissuras

Em virtude da última postagem, recebi muitas mensagens pelo direct solicitando maiores explicações sobre a tecnologia de injeção de fissuras nas estruturas de concreto armado. Então, farei esta postagem pra explicar um pouco melhor.   A técnica consiste basicamente em se aplicar os bicos de injeção, ora em furos realizados com brocas de diâmetro específico, ora aderidos sobre a superfície do concreto, espaçados estrategicamente no caminho (path) da fissura; vedar a fissura ou quaisquer outros vazios que possam estar conectados com as fissuras na região entre bicos (ou próximos deles) com uma resina tixotrópica, geralmente a epoxídica; aplicar (injetar) nos bicos, uma resina mais fluida, ou até materiais inorgânicos; escolher uma direção de aplicação mais adequada ao material adotado e mais adequada em função do grau de preenchimento da fissura que se deseje. (a) (b) (c) Fig. 1 – Detalhe da sequência de atividades (a) realização dos furos; (b) aplicação dos bicos de perfuração; (c) colmatação das fissuras com resina tixotrópica   Existem duas situações gerais em que a injeção é adotada como forma de recuperação. A primeira ocorre quando é necessário colmatar uma fissura que esteja submetida a um fluxo de algum fluido, ou esteja na possibilidade de ocorrer (em muros de arrimo ou contenções em contato com água). Nessas situações, é mais indicado a utilização de selantes como material de injeção, as resinas acrílicas e poliuretânicas e/ou a resinas poliuretânicas hidro expansivas. Caso o fluxo seja atual e contínuo, primeiramente, injeta-se a resina hidro expansiva e depois o selante de poliuretano. Nessas situações as fissuras podem possuir causa ainda ativa, ou seja, fissuras cuja causa ainda não foi sanada. Na segunda situação, o objetivo é reestabelecer a monoliticidade do elemento estrutural, de modo que as transferência de carregamento ocorra normalmente e a rigidez do elemento estrutural seja reestabelecida.

Saiba Mais »

Arquitetos Importantes

Nascido em Sandrio, Italia no ano de 1891, Pies Luigi Nervi viveu sua infância entre paisagens cheias de geleira e caminhando entre picos nevados. Foi um jovem prodígio fascinado pela matemática e pelo cálculo convencional e isso deu seguimento a sua formação fazendo-o se inscrever para engenheiro civil na Bolonha. Uma vez concluída sua carreira, em 1913, o engenheiro se dedica a construção de fabricas e pontes de onde viajava constantemente entre Bolonha e Florença, acumulando experiências e conhecimentos. Os dias passaram entre suas viagens quando seus olhos foram abertos e toda a Itália encontrava-se sob a mudança no jeito de viver e sobreviver, estava se iniciando a Primeira Guerra Mundial. Ainda assim, essa infeliz situação não freou o trabalho de Nervi. Alistado no corpo de engenheiro, combateu de frente, onde sua engenhosidade e criatividade foram significativas para consertar pontes e construir caminhos essenciais em meio a Guerra. Dois anos depois de concluída a primeira Guerra mundial, fundou seu próprio escritório onde começou a ganhar fama e prestigio e teve seu primeiro grande feito, a construção do Cinema-Teatro Angus, uma sala onde se fez presente grandes produções cinematográficas de todo o mundo. Ao final do trabalho, ficou claro que os telhados seriam a sua marca registrada. A construção espetacular mostrava uma abertura para ficar no centro da obra onde um problema matemático complexo era resolvido. Em 1929, vence concurso de construção que lhe permitiu construir o estádio Municipal de Florença, também conhecido como Stadio Comunale Artemio Franchi. Ao concluir a obra, em 1932, as pessoas ficaram chocadas com a construção e com sua forma oval e assimétrica onde se destacava o teto tribuna. O convés se estendia para a frente, apoiando longas vigas de concreto em formas de X e que se escondiam entre as arquibancadas. Isso deixou um precedente

Saiba Mais »